A Global Solution to Sparse Correspondence Problems
نویسندگان
چکیده
We propose a new methodology for reliably solving the correspondence problem between sparse sets of points of two or more images. This is a key step in most problems of computer vision and, so far, no general method exists to solve it. Our methodology is able to handle most of the commonly used assumptions in a unique formulation, independent of the domain of application and type of features. It performs correspondence and outlier rejection in a single step and achieves global optimality with feasible computation. Feature selection and correspondence are first formulated as an integer optimization problem. This is a blunt formulation, which considers the whole combinatorial space of possible point selections and correspondences. To find its global optimal solution, we build a concave objective function and relax the search domain into its convex-hull. The special structure of this extended problem assures its equivalence to the original one, but it can be optimally solved by efficient algorithms that avoid combinatorial search. This methodology can use any criterion provided it can be translated into cost functions with continuous second derivatives.
منابع مشابه
Face Recognition in Thermal Images based on Sparse Classifier
Despite recent advances in face recognition systems, they suffer from serious problems because of the extensive types of changes in human face (changes like light, glasses, head tilt, different emotional modes). Each one of these factors can significantly reduce the face recognition accuracy. Several methods have been proposed by researchers to overcome these problems. Nonetheless, in recent ye...
متن کاملModel Based Correspondence
We present a new technique to register an object model with an observed image. The technique uses the model to establish an image-to-model correspondence and, therefore, to facilitate the registration process. The model guides and constrains the matching procedure in order to reduce the inherent complexity of the registration problem and to increase the robustness and eeciency of the solution. ...
متن کاملRobust Estimation in Linear Regression with Molticollinearity and Sparse Models
One of the factors affecting the statistical analysis of the data is the presence of outliers. The methods which are not affected by the outliers are called robust methods. Robust regression methods are robust estimation methods of regression model parameters in the presence of outliers. Besides outliers, the linear dependency of regressor variables, which is called multicollinearity...
متن کاملInnovative Use of the Law to Address Complex Global Health Problems; Comment on “The Legal Strength of International Health Instruments - What It Brings to Global Health Governance?”
Addressing the increasingly globalised determinants of many important problems affecting human health is a complex task requiring collective action. We suggest that part of the solution to addressing intractable global health issues indeed lies with the role of new legal instruments in the form of globally binding treaties, as described in the recent article of Nikogosian and Kickbusch. However...
متن کاملGlobal optimization of fractional posynomial geometric programming problems under fuzziness
In this paper we consider a global optimization approach for solving fuzzy fractional posynomial geometric programming problems. The problem of concern involves positive trapezoidal fuzzy numbers in the objective function. For obtaining an optimal solution, Dinkelbach’s algorithm which achieves the optimal solution of the optimization problem by means of solving a sequence of subproblems ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- IEEE Trans. Pattern Anal. Mach. Intell.
دوره 25 شماره
صفحات -
تاریخ انتشار 2003